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Area de Fisica Téorica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca,
Spain

Received 7 May 1996, in final form 6 September 1996

Abstract. In this paper we generalize our previous results of the generalized one-mode
harmonic oscillator to the generalized two-mode case. Systematic use is made of theSO(3, 2)

dynamical group and we are able to write a general form for the exact time evolution operator
in terms of squeezing operators of one and two modes. A complete classification of the exact
solutions is made and we derive them explicitly whenever possible. The relevant results on
algebraic decomposition, coherent state generators and classification of the solutions are shown
in tables. A plethora of soluble Hamiltonians already treated in the literature, which appear to
be particular cases of the general formalism presented herein, are analysed as well as new cases,
which to the authors’ knowledge, have not yet been considered.

1. Introduction

Two-mode time-dependent oscillators are the origin of an important body of modern
scientific literature concerning applications to quantum optics, squeezing and laser
interactions in two-level atoms. We shall be dealing with this problem in a systematic
way in this paper such that a complete classification of the quantum integrable cases shall
be given, taking advantage of the relationship with the dynamical groupSO(3, 2).

Let us consider here the generalization to two degrees of freedom of the one-mode time-
dependent harmonic oscillator which was considered extensively by the present authors in
[1]. The generalized two-mode Hamiltonian is now given by

H(t) = z1
p2

1

2m
+ ω1

2
u1(x1p1 + p1x1) + ω2

1

2
mv1x

2
1 + z2

p2
2

2m
+ ω2

2
u2(x2p2 + p2x2)

+ ω2
2

2
mv2x

2
2 + z

p1p2

2m
+ √

ω1ω2(ux1p2 + u′x2p1) + 1

2
mvω1ω2x1x2 (1.1)

where z(t), z1(t), z2(t), u(t), u′(t), u1(t), u2(t), v(t), v1(t) and v2(t) are real functions of
time such thatH(t) remains Hermitian and verify the initial conditions which allow us to
reduce the system to two initially uncoupled one-dimensional harmonic oscillators. In the
literature we have found several particular cases(u = u′ = z1 = z2 = v1 = v2 = 0) [2]
or (z1 = z2 = 1 andu = u′ = u1 = u2 = z = 0) [3, 4]. It has also been used in [5]
to describe the interaction of a charged two-dimensional oscillator under the action of a
magnetic field. In [6] linear terms were added to this Hamiltonian which can also be treated
easily by means of our formalism.
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The introduction of the bosonic operatorsa1, a2

a1 = 1√
2h̄mω1

(mω1x1 + ip1) (1.2)

a2 = 1√
2h̄mω2

(mω2x2 + ip2) (1.3)

that satisfy the canonical conmutation relation

[ai, aj ] = [a+
i , a+

j ] = 0 [ai, a
+
j ] = δij i, j = 1, 2 (1.4)

and allow us to write the Hamiltonian as

H(t) = 2s1
(
a+

1 a1 + 1
2

) + g∗
1a

2
1 + g1a

+2
1 + 2s2

(
a+

2 a2 + 1
2

) + g∗
2a

2
2 + g2a

+2
2

+2da+
1 a+

2 + 2d∗a1a2 + 2ea+
1 a2 + 2e∗a1a

+
2 (1.5)

with

gj = h̄ωj

4
[(vj − zj ) + 2iuj ] j = 1, 2 (1.6)

sj = h̄ωj

4
(vj + zj ) j = 1, 2 (1.7)

2d = h̄
√

ω1ω2

4
(v − z) + i

h̄

2
(ω2u + ω1u

′) (1.8)

2e = h̄
√

ω1ω2

4
(v + z) − i

h̄

2
(ω2u − ω1u

′) . (1.9)

This new representation, in which the main role is now played by the canonical operators
(a1, a

+
1 , a2, a

+
2 ), clarifies the interpretation of the system as describing the normal modes of

the quantized electromagnetic field. This is the main reason whyH(t) can be (and actually
is being) used in quantum optics where the description of nonlinear quantum interactions
between light and different kinds of optical material media makes the formalism very useful
by looking at the interaction of photons as the active part of the dynamics while the optical
media is regarded as the passive part of the system.

2. The Lie algebra of the groupSO(3, 2)

The identification of the dynamical symmetry of the present system [1–3] requires us to
consider the bilinear products of two independent bosonic operators. Given two bosonic
operatorsa1, a2 that satisfy (1.4), we can construct the Hermitian operators

J12 = 1
2[a+

1 a1 − a+
2 a2] J15 = 1

4[a+2
1 + a2

1 − a+2
2 + a2

2] (2.1)

J13 = 1
2[a+

1 a2 − a1a
+
2 ] J23 = 1

2i[a+
1 a2 − a1a

+
2 ] (2.2)

J14 = 1
4i[a+2

1 − a2
1 + a+2

2 − a2
2] J24 = − 1

4[a+2
1 + a2

1 − a+2
2 − a2

2] (2.3)

J25 = 1
4i[a+2

1 − a2
1 − a+2

2 + a2
2] J35 = 1

2i[a+
1 a+

2 − a1a2] (2.4)

J34 = − 1
2[a+

1 a+
2 + a1a2] J45 = 1

2[a+
1 a1 + a+

2 a2 + 1] (2.5)

that satisfy the conmutation rules:

[Jab, Jcd ] = i[gadJbc + gbcJad − gacJbd − gbdJac] (2.6)

with gij = 0 if i 6= j ; gij = 1 if i = 1, 2, 3 and gij = −1 if i = 4, 5 and yield to
determine the set of the operatorsJab (a = 1, 2, 3, 4 andb = 2, 3, 4, 5) as a realization of



Generalized two-mode harmonic oscillator 7547

the Lie algebraso(3, 2) ≈ sp(4, R). The dynamical symmetry of the Hamiltonian (1.1) is
established in such a way.

By considering the linear combinations:

C0 = J12 = 1
2[a+

1 a1 − a+
2 a2] D0 = J45 = 1

2[a+
1 a1 + a+

2 a2 + 1] (2.7)

C+ = J13 − iJ23 = a+
1 a2 D+ = −J34 − iJ35 = a+

1 a+
2 (2.8)

C− = J13 + iJ23 = a1a
+
2 D− = −J34 + iJ35 = a1a2 (2.9)

and

E0 = 1
2(J12 + J45) = 1

2

[
a+

1 a1 + 1
2

]
(2.10)

E+ = 1
2(J15 − J24) − 1

2i(J14 + J25) = 1
2a+2

1 (2.11)

E− = 1
2(J15 − J24) + 1

2i(J14 + J25) = 1
2a2

1 (2.12)

F0 = 1
2(J45 − J12) = 1

2

[
a+

2 a2 + 1
2

]
(2.13)

F+ = 1
2(J15 + J24) − 1

2i(J14 − J25) = 1
2a+2

2 (2.14)

F− = 1
2(J15 + J24) + 1

2i(J14 − J25) = 1
2a2

2 (2.15)

as well as their conmutation relations, we can obtain forso(3, 2) the subalgebra structure
given in table 1.

Table 1. Subalgebras ofso(3, 2).

Generators Subalgebra Casimir

C = {C0, C+, C−} so(3) ≈ su(2) C2 = C2
0 + 1

2(C+ C− + C− C+)

D = {D0, D+, D−} so(2, 1) ≈ su(1, 1) D2 = −D2
0 + 1

2(D+ D− + D− D+)

E = {E0, E+, E−} so(2, 1) ≈ su(1, 1) E2 = −E2
0 + 1

2(E+ E− + E− E+)

F = {F0, F+, F−} so(2, 1) ≈ su(1, 1) F 2 = −F 2
0 + 1

2(F+ F− + F− G+)

E ∪ F su(1, 1) + su(1, 1)

{C0} ∪ D u(1) + su(1, 1)

{D0} ∪ C u(1) + su(2)

The two independent Casimir operators [7] in the realizations are

C1 = 2E0 + 2E2 + 2F 2 + D+D− − C+C− = 5
4 (2.16)

C2 = 1
2

{
[C+, 8]2 + [C−, 8]2 − [D+, 8]2 − [D+, 8]2 − 282

} = 0 (2.17)

with 8 = E2 − F 2.
The Hilbert space ofH(t) is the space of the representation

(
5
4, 0

)
of sp(4, R).

Such a representation contains the direct product of the representationsD+(E)∗D+(F )

of su(1, 1) + su(1, 1) with E, F, 1
4 or 3

4, the states of which have a definite number of
photons. The Hilbert space, in this realization of the algebra, should therefore be generated
by states with a definite number of photons in each mode. Notice that the compact maximal
subalgebra,u(1) + su(2), is constructed with the operators that conserve the total number
of photons.
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3. Group elements and the temporal evolution

By using the exponential mapping we can express each group element as

exp

{∑
ij

αij Jij

}
i, j : 1 . . . 5 . (3.1)

If we consider just unitary elements, we can find, after a suitable factorization, elements as
[8]

U = S1S2S12T R1R2 (3.2)

where the notation is quite straightforward:

S1 = S1(β1, a1) = exp
[

1
2(β1a

+2
1 − β∗

1a2
1)

]
(3.3)

S2 = S2(β2, a2) = exp
[

1
2(β2a

+2
2 − β∗

2a2
2)

]
(3.4)

S12 = S12(β, a1, a2) = exp[βa+
1 a+

2 − β∗a1a2] (3.5)

T = T (τ, a1, a2) = exp[τa+
1 a2 − τ ∗a1a

+
2 ] (3.6)

R1 = R1(θ1, a1) = exp
[

1
2iθ1

(
a+

1 a1 + 1
2

)]
(3.7)

R2 = R2(θ2, a2) = exp
[

1
2iθ2

(
a+

2 a2 + 1
2

)]
. (3.8)

The Baker–Hausdorff–Campbell formula allows us to rewrite them in a more useful
way that is summarized in table 2; notice that the proposed factorization is always possible
for the symmetrySU(1, 1) but not for SU(2). The reason lies in the different behaviour
of the function tanh(x) which is continuous in the positive halfline and tan(x) which has
discontinuities atx = (2l + 1) π

2 . For instance, it is not possible to split the operator
T

(
1
2πei8, a1, a2

)
. Therefore we accept 06 q < π/2 (see table 2).

Table 2. Factorization of the operators.

Si(βi , ai ) = Si(ηi , ai ) = exp{(ηi/2)}a+2
i } exp{(γi/2)(a+

i ai + 1/2)} exp{−(ηi/2)a2
i }

S12(β, a1, a2) = S12(η, a1, a2) = exp{ηa+
1 a+

2 } exp{(γ /2)(a+
1 a1 + a+

2 a2 + 1)} exp{−η∗a1a2}
T (τ, a1, a2) = T (µ, a1, a2) = exp{µa+

1 a2} exp{(π/2)(a+
1 a1 − a+

2 a2)} exp{−µ∗a1a
+
2 }

βi = ri exp{iφi} β = r exp{iφ} τ = q exp{i8}
ηi = tanhri exp{iφi} η = tanhr exp{iφ} µ = tanq exp{i8}
γi = log{1 − ηiη

∗
i } γ = log{1 − ηη∗} π = log{1 + µµ∗}

We shall be callingSi(βi, ai) the SU(1, 1) generalized coherent state generator as
constructed in [9–11]. Its action on the creation and annihilation operators

SjajS
+
j = aj − ηja

+
j√

1 − |ηj |2
= coshrj aj − ei8j sinhrj a

+
j (3.9)

transforms them into a linear combination of the previous canonical operators, which has
the effect of transforming an initial generalized coherent state into a one-photon coherent
mixture with different noise properties as is shown in table 3—we call it theone-mode
squeezing operator.
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Table 3. Bogolyubov transformations.

Sj aiS
+
j = (aj − ηj a

+
j )(1 − |ηj |2)−1/2 = coshrj aj − eiφj sinhrj a

+
j

Siaj S
+
i = aj i 6= j

S12a1S
+
12 = (a1 − ηa+

2 )(1 − |η|2)−1/2 = coshra1 − eiφ sinhra+
2

S12a2S
+
12 = (a2 − ηa+

1 )(1 − |η|2)−1/2 = coshra2 − eiφ sinhra+
1

T a1T
+ = (a1 − µa2)(1 + |µ|2)−1/2 = cosqa1 − ei8 sinqa2

T a2T
+ = (a2 + µ∗a1)(1 + |µ|2)−1/2 = cosqa2 + e−i8 sinqa1

RjajR
+
j = exp{− 1

2 iθj }aj

RiajR
+
i = aj i 6= j

S(β, a1, a2) is the two-modeSU(1, 1) generalized coherent state generator, which leads
to the two-mode squeezing operator

S12a1S
+
12 = a1 − ηa+

2√
1 − |η|2

= coshra1 − eiφ sinhra+
2 (3.10)

S12a2S
+
12 = a2 − ηa+

1√
1 − |η|2

= coshra2 − eiφ sinhra+
1 . (3.11)

These transformations mix the linear combinations of the canonical operators of both modes.
The noise properties for the transformed operators also appear to be drastically modified.

T (τ, a1, a2) is the compact operator belonging to the set ofSU(2) generalized coherent
state generators. This operator, as will be shown below, does not modify the noise properties
of the transformed operator. Its action can be written as

T a1T
+ = a1 − µa2√

1 + |µ|2
= cosqa1 − ei8 sinqa2 (3.12)

T a2T
+ = a2 + µ∗a1√

1 + |µ|2
= cosqa2 + e−i8 sinqa1 . (3.13)

Ri(θi, ai) is merely a rotation operator in the complex plane acting as

RjajR
+
j = exp

{− 1
2iθj

}
aj (3.14)

RiajR
+
i = aj i 6= j (3.15)

and it transforms a given generalized coherent state into another state with an eigenvalue
rotated by an angleθi . Indeed it does not modify the noise properties. A brief account of
these properties is given in table 4. The temporal evolution of the significant elements can
be obtained from the Magnus formula [12] and is summarized in table 5.

Table 4. Generators of coherent states.

Generators Subgroup

T = T (τ, a1, a2) SU(2)

S1 = S1(β1, a1) SU(1, 1)

S2 = S2(β2, a2) SU(1, 1)

S12 = S12(β, a1, a2) SU(1, 1)
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Table 5. Temporal evolution of the operators.

ṠiS
+
i = η̇i

1−|ηi |2
a+2
i
2 − 1

2
η̇i η

∗
i
−ηi η̇

∗
i

1−|ηi |2 (a+
i ai + 1

2) − η̇∗
i

1−|ηi |2
a2
i
2

Ṡ12S
+
12 = η̇

1−|η|2 a+
1 a+

2 − 1
2

η̇η∗−ηη̇∗
1−|η|2 (a+

1 a1 + a+
2 a2 + 1) − η̇∗

1−|η|2 a1a2

Ṫ T + = µ̇

1+|µ|2 a+
1 a2 + 1

2
µ̇µ∗−µµ̇∗

1+|µ|2 (a+
1 a1 − a+

2 a2) − µ̇∗
1+|µ|2 a1a

+
2

ṘjR
+
j = i

θ̇j
2 (a+

j aj + 1
2)

4. Temporal evolution and diagonalization

The exact solution of the Schrödinger equation for the Hamiltonian (1.1) is a problem of
great difficulty that relies on the existence of two degrees of freedom with a strong nonlinear
interaction which contains the 10-parameter dynamical group symmetrySp(4, R). To solve
the problem it is necessary to deal with a nonlinear system of 10 coupled differential
equations. Nevertheless, in some particular cases, with interesting physical applications, the
system has exact solutions. These particular cases are found by reducing the system to one
effective degree of freedom. The reduction can be obtained either through a complete and
systematic classification of the Lie subalgebras of the system or by specifying the parameters
of the Hamiltonian and its corresponding relationship to them. Both methods can be shown
to be totally equivalent. Throughout this paper we have used the second method.

The temporal evolution operator can be written as an element of one of the above-
mentioned subgroups in such a way that the whole problem can be solved just by using
the subgroup elements, and the elements of the total group are, in principle, not necessary.
The instantaneous diagonalization will be treated in a similar manner: the triparametric
reductions ofH(t) are related through a unitary operator constructed with the help of the
corresponding Cartan subalgebra of each subgroup (see table 4).

4.1. Reduction tosu(2) + u(1), g1 = g2 = d = 0

H(t) = 2s1
(
a+

1 a1 + 1
2

) + 2s2
(
a+

2 a2 + 1
2

) + 2ea+
1 a2 + 2e∗a1a

+
2 (4.1)

whereH(t) could be interpreted as the Hamiltonian describing the ideal conversion of one
photon of frequencyω2 < ω1 and another one of frequencyω1−ω2 (coming from a classical
pumping field) which are simultaneously destroyed to produce a single photon of frequency
ω1. The coherent pumping light beam is treated as an unlimited source of photons described
by the classical functione(t).

H(t) is also an element of the algebraso(3, 2) and its subalgebrasu(2) + u(1). The
states belonging to this representation space can be classified by the number of photons
in each mode. The relationship between these photon numbers and the eigenvalues of the
su(2) representation,j andm, are given by

j = 1
2(k1 + k2) (4.2)

m = 1
2(k1 − k2) . (4.3)

It is trivial to see that all possiblesu(2) representations may be realized withk1 andk2 as
arbitrary integers.

The group elements and, in particular, the time evolution operator act in an irreducible
manner on the representation space vector states for a fixed value ofj . In this way they
leave invariant the total number of photons but not the individual number in each mode.
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4.1.1. Instantaneous diagonalization.One can always achieve an instantaneous
diagonalization even if the dynamical group is notSU(2) (as is the case here). The unitary
operator (an element of the group) acting on the Cartan subalgebra will now be a mixing
operator andH(t) can be expressed in the instantaneous approximation as

H(t) = T (µ0){2(s1 + s2)D0 + 2F(t)C0}T +(µ0) (4.4)

for certain values of the functionsF(t) and µ0(t) in connection with the Hamiltonian
functions. For instance,

F(t) =
√

(s1 − s2)2 + 4|e|2 . (4.5)

The instantaneous eigenstates ofH(t) are the generalized coherent states
T (µ0(t), a1, a2)|k1, k2〉 corresponding to a realization in two modes ofSU(2) with a time-
dependent eigenvalue

Ek1,k2 = (s1 + s2)(k1 + k2 + 1) + F(t)(k1 − k2) . (4.6)

Notice thatF(t) is real for any value of the parameters. This means that anySU(2) operator
is diagonalizable and (in particular for this realization) any two-dimensional oscillator can
be put in correspondence through unitary operators to two independent stationary harmonic
oscillators.

4.1.2. Temporal evolution.The direct product implies that the evolution operator can be
constructed by means of the product of two unitary elements, one fromU(1) and the other
from SU(2)

U(t) = T (τ, a1, a2)R1(θ1, a1)R2(θ2, a2) (4.7)

determined by the characteristic functions defined in terms of the parameters of the
Hamiltonian by means of the equations

θ1 = −2

h̄

∫ t

0
(2s1 − e∗µ − eµ∗) dt (4.8)

θ2 = −2

h̄

∫ t

0
(2s2 + e∗µ + eµ∗) dt (4.9)

µ̇ = −i
2

h̄
[e + (s1 − s2)µ − e∗µ2] µ(0) = 0 . (4.10)

4.2. Reduction tosu(1, 1) + U(1), g1 = g2 = e = 0

H(t) = 2s1
(
a+

1 a1 + 1
2

) + 2s2
(
a+

2 a2 + 1
2

) + 2da+
1 a+

2 + 2d∗a1a2 (4.11)

whereH(t) should now be regarded as describing the ideal frequency conversion in which a
photon of frequencyω1 +ω2 of a laser beam in a classical coherent state is destroyed when
interacting with a material media. The result is the creation of two photons with frequencies
ω1 andω2; this process takes place in the degenerate optical parametric operators [13–17].

H(t) is now an element of thesu(1, 1) + u(1) part of the sp(4, R) algebra. The
realization ofsu(1, 1) that we should consider here uses two bosonic operators that describe
two independent vibration modes and differs from that used in the one degree of freedom
case [1]. The eigenvalue of the Casimir operator is

D2 = 1
4 − C2

0 (4.12)

and is not a fixed value but depends on the occupation number of both modes as well as
on the eigenvalueC0. Equation (4.12) has two solutions: to each state|k1, k2〉 with a given
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occupation degree corresponds two different values of(k, m). One can freely choose one
of them. The states|k1, k2〉 = |k, k + m〉 are identified with

k = k1 − k2 + 1

2
(4.13)

m = k2 . (4.14)

In particular, all the states with equal numbers of photons in both modes constitute the shell
k = 0, m = 0, 1, 2, etc ofSU(1, 1).

The elements of the group now leave invariant thedifferenceof the number of photons
in each mode but not the total number. Therefore the action of the group elements on the
space of states is equivalent to creating (or annihilating) pairs of photons of each mode
simultaneously.

4.2.1. Instantaneous diagonalization.Calling ε the sign ofs1 + s2, H(t) can be expressed
as

H(t) = S12(η0){2(s1 − s2)C0 + 2εF (t)D0}S+
12(η0) (4.15)

for certain values ofF(t) and η0(t) independent of the functions of the Hamiltonian. In
particular,

F(t) =
√

(s1 + s2)2 − 4|d|2 (4.16)

η0(t) = −ε
2d(t)

|s1 + s2| + F
. (4.17)

The instantaneous eigenstates ofH(t) are the generalized coherent states
S[η0(t), a1, a2]|k1, k2〉 corresponding to a two-mode realization ofSU(1, 1) with a time-
dependent eigenvalue

Ek1,k2(t) = (s1 − s2)(k1 − k2) + εF (t)(k1 + k2 + 1) . (4.18)

This method can only be applied if the following condition holds:

(s1 + s2)
2 − 4|d|2 > 0 . (4.19)

This is due to the fact thatF(t) is not well defined if this condition is not fulfilled.

4.2.2. Temporal evolution. In this case the temporal evolution operator should be factorized
as the product of a two-mode ‘squeezing’ operator by a rotation operator

U(t) = S12(β, a1, a2)R1(θ1, a1)R2(θ2, a2) (4.20)

whose characteristic functions are

θ1 = −2

h̄

∫ t

0
(2s2 + d∗η + dη∗) dt (4.21)

θ2 = −2

h̄

∫ t

0
(2s1 + d∗η + dη∗) dt (4.22)

η̇ = −i
2

h̄
[d + (s1 + s2)η + d∗η2] η(0) = 0 . (4.23)

The exact states ofH(t) can be obtained with the aid of table 2 as

|9(t)〉 = S12(β, a1, a2)R1(θ1, a1)R2(θ2, a2)|k1, k2〉 . (4.24)
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4.3. Reduction tosu(1, 1) + su(1, 1), d = e = 0

The Hamiltonian is

H =
2∑

i=1

2si

(
a+

i ai + 1
2

) + gia
+2
i + g∗

i a
2
i . (4.25)

The initial Hamiltonian is an element of the partsu(1, 1)+ su(1, 1) of the so(3, 2) algebra.
Because of the conmutation of all the operators of the one-mode with those of the two-
mode, the problem can be factorized and its solution requires the solution of two independent
identical systems.

4.3.1. Instantaneous diagonalization.The operatorsS = S1(β1, a1)S2(β2, a2) (see table 2)
diagonalizeH(t) exactly for all times [1]. In this case the relevant parameters take the form

H(t) =
2∑

i=1

2εiFi(t)Si (η0i )
(
a+

i ai + 1
2

)
S+

i (η0i ) i = 1, 2 (4.26)

Fi(t) =
√

s2
i − |gi |2 i = 1, 2 (4.27)

η0i (t) = −εi

gi

|si | + Fi

i = 1, 2 . (4.28)

4.3.2. Temporal evolution.The evolution operator isU(t) = U1(t)U2(t) with Ui(t) defined
as

Ui(t) = Si(βi, ai)Ri(θi, ai) (4.29)

the characteristic functions of which are [1]

θi = −2

h̄

∫ t

0
(2si + g∗

i ηi + giη
∗
i ) dt i = 1, 2 (4.30)

η̇i = −2i

h̄
(gi + 2siηi + g∗

i η
2
i ) dt ηi(0) = 0 i = 1, 2 . (4.31)

4.4. g1 = g2 = s1 = s2 = 0

H = 2d∗a1a2 + 2ea+
1 a2 + HC . (4.32)

The initial Hamiltonian does not belong to the subalgebras considered and contains just
terms of the interaction between the two modes. In some cases the two modes in the
interaction should be decoupled by means of a canonical transformation and the problem
could be solved in terms of two independent particles. In fact, we can introduce a new pair
of modes

ā1 = Xa1X
+ =

√
e

|e|
a1 − a2√

2
(4.33)

ā2 = Xa2X
+ =

√
e∗

|e|
a1 + a2√

2
(4.34)

that are canonically related to the initial modes through the product of one mixed operator
by a rotation operator,

X = T
(π

4
, a1, a2

)
R1(−arg(e), a1)R2(arg(e), a2) . (4.35)
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The time-dependent system transformed byX is

H̄ = ih̄ẊX+ + XHX+ = −h̄

2

d

dt
[arg(e)]a+

1 a2 + d∗(a2
1 − a2

2) + |e|(a+
1 a1 − a+

2 a2) + HC .

(4.36)

The only time dependence inX is the one coming from arg(e) in such a way that
if this argument is constant (in particular, ife(t) is real or purely imaginary), the
canonically transformed Hamiltonian is an element of thesu(1, 1) + su(1, 1) subalgebra
that corresponds to two independent particles. The system is reduced to the case discussed
in subsection 4.3. In any case, the same transformationX could be used to obtain the
instantaneous diagonalization of the Hamiltonian.

4.4.1. Instantaneous diagonalization.The termXHX+ actually represents two uncoupled
one-dimensional harmonic oscillators. For a given timet , the Hamiltonian can actually be
written as

H(t) = F(t)X+S1(η0, a1)S2(η0, a2){a+
1 a1 − a+

2 a2}S+
1 (η0, a1)S

+
2 (η0, a2)X (4.37)

for certain values ofF(t) andη0(t) as functions of the parameters in the form

F(t) =
√

|e|2 − 4|d|2 (4.38)

η0(t) = − 2d

F(t) + |e| . (4.39)

The instantaneous eigenstate ofH(t) are the states given by

X+S1(η0, a1)S2(η0, a2)|k1, k2〉 (4.40)

with time-dependent eigenvalues

Ek1k2(t) = F(t)(k1 − k2) . (4.41)

This diagonalization can only be made possible if the condition|e| > 2|d| holds, and the
set of eigenstates becomes highly degenerate. All states with the same differencek1 − k2

have the same eigenvalue.

4.4.2. Temporal evolution.The state corresponding tōH can easily be found by the
evolution ofH(t) using Ū (t) = Ū1(t)Ū2(t) given by

Ūi(t) = Si(βi, ai)Ri(θi, ai) i = 1, 2 (4.42)

and the corresponding functions are

θi = ±2

h̄

∫ t

0
(2|e| + d∗ηi + dη∗

i ) dt i = 1, 2 (4.43)

η̇i = ± 2

ih̄
[d + 2|e|ηi + d∗η2

i ] ηi(0) = 0 i = 1, 2 . (4.44)

As soon asŪ (t) has been explicitly obtained one can use it to findU(t) = X+Ū (t)X. We
have been able to demonstrate that using the conmutation relations:

R1(θ1)R2(θ2)T (τ ) = T
(
τei(θ1−θ2)/2

)
R1(θ1)R2(θ2) (4.45)

Ri(θi)Si(ηi) = Si

(
ηie

iθi
)
Ri(θi) . (4.46)

The unitary operatorU(t) can be factorized as

U(t) = T
(
−π

4
δe

)
S1(η1δe)S2(η2δ

∗
e )R1(θ1)R2(θ2)T

(π

4
δe

)
(4.47)

with δe = ei arg(e).
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An alternative way to deal with the complete case relies upon the use of the interaction
picture. Let a HamiltonianH0, (su(1, 1) + su(1, 1))-invariant be of the form

H0 =
2∑

j=1

[
2sj

(
a+
j aj + 1

2

) + gja
+2
j + g∗

j a2
j

]
(4.48)

with time evolution operator given byU0(t) of section 4.3 and the interaction Hamiltonian
is given by

Hint = U+
0 [2da+

1 a+
2 + 2d∗a1a2 + 2ea+

1 a2 + 2e∗a1a
+
2 ]U0

= 2d̄a+
1 a+

2 + 2d̄∗a1a2 + 2ea+
1 a2 + 2ēa+

1 a2 + 2ē∗a1a
+
2 (4.49)

where

d̄ = δ∗
1δ

∗
2√

1 − |η1|2
√

1 − |η2|2
[d + d∗η1η2 + e∗η1 + eη2] (4.50)

ē = δ∗
1δ2√

1 − |η1|2
√

1 − |η2|2
[d∗η1 + dη∗

2 + e + e∗η1η
∗
2] (4.51)

with δj = eiθj /2, j = 1, 2.
If one should be able to find the exact evolution operatorUint (t) for Hint , the problem

would have been easily solved since the time evolution of the initial system will be given by
U(t) = U0(t)Uint (t). Therefore the problem can be reduced to solve the case of section 4.4
where arg(e) is not a constant. We have been able to establish after a long calculation that
if one constraint holds this goal can be achieved. The constraint is†

arg(ē) = θ2 − θ1

2
+ arg tan(u) = cte (4.52)

whereu is given by the following expression:

u = |d|[|η1| sin41 + |η2| sin42] + |e|[sin(arge) + |η1||η2| sin(41 − 42 − arge)]

|d|[|η1| cos41 + |η2| cos42] + |e|[cos(arge) + |η1||η2| cos(41 − 42 − arge)]
(4.53)

and

4i = argηi − argd . (4.54)

To this class of general solutions belongs the Hamiltonian solved in [2] with the
identifications

e(t) = h̄� (4.55)

g1 = −g2 = −i
h̄

2
0 (4.56)

s = d = 0 . (4.57)

In our formalism we shall be obtaining

η2 = −η1 = tanh

{∫ t

0
0(s) ds

}
(4.58)

θ2 = θ1 = d̄ = 0 ē = e (4.59)

Hint = 2h̄�(a+
1 a2 + a1a

+
2 ) (4.60)

which is clearlySU(2)-invariant.

† Notice that the constraint involves a relationship of 10 functions. However restrictive it might seem there is
still quite a lot of room for many interesting cases that can be solved exactly as we shall show below.
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4.5. g1 = g, g2 = ge−2i arg(e), s1 = s2 = s, arg(e) = cte

The Hamiltonian is

H = g∗(a2
1 + e2i arg(e)a2

2

) + s(a+
1 a1 + a+

2 a2 + 1) + 2d∗a1a2 + 2ea∗
1a2 + HC . (4.61)

Besides the fact that the condition among the coefficients is strong, in fact it contains the
important cases: (i)g1 = g2 and e(t) real (symmetry of interchange), (ii)g1 = −g2 and
e(t) imaginary and (iii)g1 = g2 = 0, s1 = s2 ande(t) imaginary which corresponds to the
problem discussed in [18] for the degenerate case. This case is technically identical to the
previous one. The same canonical transformationX(t) drives the system to a set of two
particles whose interaction is determined for the time evolution of arg(e),

H̄ = ih̄ẊX+ + XHX+

= −h̄

2

d

dt
[arg(e)]a+

1 a2 + (ge−i arg(e) + d)a+2
1 + (ge−i arg(e) − d)a+2

2

+ (s + |e|)(a+
1 a1 + 1

2

) + (s − |e|)(a+
2 a2 + 1

2

) + HC . (4.62)

4.5.1. Instantaneous diagonalization.The static part ofH̄ of sections 4.4 and 4.5 represent
the same and differ just by their characteristic parameters. The fact that the problem has
been reduced to two one-dimensional independent harmonic generalized oscillators with
different functions forces us to consider transformations with different parametersη

(1)

0 and
η

(2)

0 . If we call ε± the sign of(s ± |e|):
H(t) = 1{ε+F1(t)a

+
1 a1 + ε−F2(t)a

+
2 a2}1+ (4.63)

where

1 = X+S1(η
(1)

0 , a1)S2(η
(2)

0 , a2) (4.64)

with

F1,2(t) =
√

(s ± |e|)2 − 4(|d|2 + |g|2 ± 2|d||g| cos(ϕg − ϕd − ϕe)) (4.65)

η
(1,2)

0 (t) = −ε±
2(ge−iϕe ± d)

|(s ± |e|)| + F1,2
. (4.66)

The instantaneous eigenstates ofH(t) are

X+S1(η
(1)

0 , a1)S2(η
(2)

0 , a2)|k1, k2〉 (4.67)

whose time-dependent eigenvalue is

Ek1,k2(t) = ε+F1(t)k1 + ε−F2(t)k2 . (4.68)

4.5.2. Temporal evolution. If arg(e) is a constant, we are again in the case of section 4.3.
The solution can be written as in (4.26) where

θj = −2

h̄

∫ t

0

[
2(s ± |e|) + (g∗ei arg(e) ± d∗)ηj + (ge−i arg(e) ± d)η∗

j

]
dt (4.69)

η̇j = 2

ih̄

[
(ge−i arg(e) ± d) + 2(s ± |e|)ηj + (g+ei arg(e) ± d∗)η2

j

]
(4.70)

ηj (0) = 0 j = 1, 2 . (4.71)
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4.6. The general case

Now let H(t) be a general Hamiltonian described by

H(t) = s1(t)
(
a+

1 a1 + 1
2

) + s2(t)
(
a+

2 a2 + 1
2

) + g1(t)a
+2
1 + g2(t)a

+2
2

+2d(t)a+
1 a+

2 + 2e(t)a+
1 a2 + HC (4.72)

wherea1, a
+
1 , a2, a

+
2 are canonical operators associated with two different modes. Let us

find the most general solution of a time evolution operatorU(t) verifying

ih̄U̇ (t)U+(t) = H(t) U(0) = 1 . (4.73)

In order to proceed we factorizeU(t) in the general form (see table 4)

U(t) = S1(β1, a1)S2(β2, a2)S12(β, a1, a2)T (τ, a1, a2)R1(θ1, a1)R2(θ2, a2) . (4.74)

Introducing this form ofU(t) in equation (4.73) we find, after a cumbersome calculation,
the following set of 10 strongly coupled first-order nonlinear differential equations. They
read as follows:
ih̄

2
η̇1 = g1 + 2s1η1 + g∗

1η
2
1 + 2(1 − |η1|2) η

1 + |η|2 G12 (4.75)

ih̄

2
η̇2 = g2 + 2s2η2 + g∗

2η
2
2 + 2(1 − |η2|2) η

1 + |η|2 G∗
12 (4.76)

ih̄

2
η̇ = H12 + [

s1 + s2 + Re{g1η
∗
1 + g2η

∗
2}

]
η + η2H ∗

12 − 2η
Re{η(G12η

∗
1 + G∗

12η
∗
2)}

1 + |η|2 (4.77)

ih̄

2
µ̇ = 1 − |η|2

1 + |η|2 (G12 − G∗
12µ

2) + µ
[
s1 − s2 + Re{g1η

∗
1 − g2η

∗
2}

]
−2µ

Re{η(G12η
∗
1 − G∗

12η
∗
2)}

1 + |η|2 (4.78)

−h̄

4
θ̇1 = s1 + Re{g1η

∗
1 + H12η

∗} − 2
Re{G12η

∗
1η}

1 + |η|2 − 1 − |η|2
1 + |η|2 Re{G12µ

∗} (4.79)

−h̄

4
θ̇2 = s2 + Re{g2η

∗
2 + H12η

∗} − 2
Re{G12η2η

∗}
1 + |η|2 + 1 − |η|2

1 + |η|2 Re{G12µ
∗} (4.80)

and initial conditions given by

η1(0) = η2(0) = η(0) = µ(0) = θ1(0) = θ2(0) = 0 (4.81)

whereG12(η1, η2) andH12(η1, η2) are defined as

G12(η1, η2) = e + η1η
∗
2e

∗ + η1d
∗ + η∗

2d√
1 − |η1|2

√
1 − |η2|2

(4.82)

H12(η1, η2) = d + η1η2d
∗ + η1e

∗ + η2e√
1 − |η1|2

√
1 − |η2|2

. (4.83)

One can easily see that these equations contain free Riccati terms appearing together
with strongly coupled terms arising mainly fromG12 and H12. One could, in principle,
obtain the functionsµ, θ1 and θ2, but first the system formed byη1, η2 and η must be
solved since it constitutes the core of the coupling. A systematic method to derive an
approximate solution can of course always be devised. One begins with the obvious
assumptionG

(0)

12 = H
(0)

12 = η(0) = 0, and the zeroth-order approximation is obtained
(η(0)

1 and η
(0)

2 ) by solving the Riccati equations (4.75), (4.76). In the next step one can
construct the first-order approximationsG

(1)

12 , H
(1)

12 andη(1) and this iterative process can be
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continued until the desired degree of approximation is needed. In any case, aside from any
approximation, one can deduce from the system the following general conclusions:

• The solution can only be expressed as spin-coherent states if and only if the following
condition holds:g1 = g2 = d = 0.

• The solution can only be expressed as two-mode squeezed states (orSU(1, 1)

generalized coherent states) if and only ifg1 = g2 = e = 0.
• A solution in terms of tensor products of one-mode squeezed states can be found if

e = d = 0.
• In spite of the fact that a general analytic solution of the general case does not seem to

exist we have found several interesting particular cases. Let us make the ansatz

ηj = −i tanhrj exp(i arggj ) j = 1, 2 (4.84)

η = −i tanhr exp(i argd) (4.85)

µ = −i tanq exp(i arge) . (4.86)

Next we impose the following condition on some of the functions appearing inH(t). In
fact, these conditions are

arggj = −4

h̄

∫ t

0
sj (t) dt j = 1, 2 (4.87)

argd = argg1 + argg2

2
+ δ1

π

2
(4.88)

arge = argg1 − argg2

2
+ δ2

π

2
. (4.89)

Under the above particular assumptions we can obtain non-trivial decouplings of the
complicated system (4.75)–(4.78) and we find that the initial system reduces to a new
one with only real functions and justfour nonlinear coupled ordinary differential equations:

ṙ1 + ṙ2 = 2

h̄
(|g1| + |g2|) + 2ε1 sinh(2r)q̇ r1(0) = 0 (4.90)

ṙ1 − ṙ2 = 2

h̄
(|g1| − |g2|) + 2ε2 sinh(2r)q̇ r2(0) = 0 (4.91)

q̇ cosh(2r) = 2

h̄
{|e| cosh(r1 + ε3r2) + ε4|d| sinh(r1 + ε3r2)} q(0) = 0 (4.92)

ṙ = 2

h̄
{|d| cosh(r1 + ε3r2) + ε4|e| sinh(r1 + ε3r2)} r(0) = 0 . (4.93)

The four simplified cases are summarized in table 6 where the meaning ofεi with
i = 1, 2, 3 and 4 becomes evident. Cases VI.a, VI.b and VI.d have not been described in
the literature, at least to the authors knowledge. Case VI.c can be proved to be equivalent
to the one described in [8]. Table 6 represents a complete classification of the types of

Table 6. Reductions of the general case.

Case δ1 δ2 ε1 ε2 ε3 ε4

VI.a 0 −1 0 −1 −1 1
VI.b −1 0 −1 0 1 1
VI.c 0 1 0 1 −1 −1
VI.d 1 0 1 0 1 −1
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systems one can encounter in dealing with the general case, which has in fact been reduced
to solve four different coupled real ordinary nonlinear differential equations.

5. Comments and conclusions

In this paper we have considered a general time-dependent quantum harmonic oscillator with
two modes which exhibits a dynamicalSO(3, 2) symmetry. In order to report a complete
classification of the exact solutions of this quantum system we have exploited the reduction
of the large dynamical group to some of its subgroupsSU(2) × U(1), SU(1, 1) × U(1)

and SU(1, 1) × SU(1, 1) each of which describe different quantum systems of physical
interest. The general formalism in the case of triparametric groups proceeds as follows:
one first identifies the time evolution operator among the corresponding subgroup elements,
using the exponential mapping, through a functional time-dependent variable that must
be a solution (in all cases) of a first-order nonlinear Riccati equation. The instantaneous
eigenstates can be put in correspondence with the eigenstates of the two uncoupled one-mode
time-dependent quantum harmonic oscillators through a unitary operator. The generator
of this transformation is also an element of the subgroup considered and can be non-
trivially parametrized through another functional time-dependent variable, but this time just
algebraically related to the previous differential variables of the system. We have also
found that some cases exhibiting the fullSO(3, 2) complete dynamical symmetry can be
reduced to two one-mode uncoupled time-dependent quantum harmonic oscillators with the
help of a suitable unitary transformation. Such particular cases also have an exact solution
that can be found with the general methods described here. Finally, the general case has
also been considered. Its exact solution is uniquely related to the solution of a system of
10 Riccati-type differential equations, but this time strongly coupled. Imposing a not too
restrictive set of conditions on the parametric functions we have been able to solve a great
many general Hamiltonians with properties summarized in table 6. Besides the presentation
of the general formalism, the study of this case probably constitutes the main result of
the paper since the four decoupled cases have been described for the first time with the
exception of case VI.c [8]. Much work remains to be done in the field of applications
of these solutions to physical Hamiltonians describing laser–matter interaction in various
situations. The appropriate place to report on these results will be periodicals dealing with
applied physics or quantum optics, but in any case work in this direction is now in progress.
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