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Abstract. In this paper we generalize our previous results of the generalized one-mode
harmonic oscillator to the generalized two-mode case. Systematic use is madeSal (Bie2)
dynamical group and we are able to write a general form for the exact time evolution operator

in terms of squeezing operators of one and two modes. A complete classification of the exact
solutions is made and we derive them explicitly whenever possible. The relevant results on
algebraic decomposition, coherent state generators and classification of the solutions are shown
in tables. A plethora of soluble Hamiltonians already treated in the literature, which appear to
be particular cases of the general formalism presented herein, are analysed as well as new cases,
which to the authors’ knowledge, have not yet been considered.

1. Introduction

Two-mode time-dependent oscillators are the origin of an important body of modern
scientific literature concerning applications to quantum optics, squeezing and laser
interactions in two-level atoms. We shall be dealing with this problem in a systematic
way in this paper such that a complete classification of the quantum integrable cases shall
be given, taking advantage of the relationship with the dynamical géau(3, 2).

Let us consider here the generalization to two degrees of freedom of the one-mode time-
dependent harmonic oscillator which was considered extensively by the present authors in
[1]. The generalized two-mode Hamiltonian is now given by

B = 2P 4 uneaps + e +
2m 2 2

2

+ %mvgxzz + z% + Jorwa(uxips + u'xop1) + %mvwla)gxlxg (1.2)
where z (1), z1(t), z2(t), u(@), u'(t), ur(t), uz(t), v(t), v1(t) and vy(¢) are real functions of
time such thatH (r) remains Hermitian and verify the initial conditions which allow us to
reduce the system to two initially uncoupled one-dimensional harmonic oscillators. In the
literature we have found several particular cages= u' = z1 = z2 = v1 = v2 = 0) [2]

of z1 =z2=1andu = u' = uy = up =z = 0) [3, 4]. It has also been used in [5]

to describe the interaction of a charged two-dimensional oscillator under the action of a
magnetic field. In [6] linear terms were added to this Hamiltonian which can also be treated

easily by means of our formalism.

2
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The introduction of the bosonic operatars a;

1 .
a1 = —=———(mw1x1 +1p1) (1.2)
vV 2hmw,
! ( +ip2) (1.3)
ap = —(——(mMwx2 P2 .
vV 2hma)2

that satisfy the canonical conmutation relation
la:, a;] = [a;, a;'] =0 [a;, a;'] =4 i,j=12 (1.4)
and allow us to write the Hamiltonian as

H(t) = 2s1(afa1 + 3) + gia? + gra? + 25p(agaz + 3) + ghas + goaj?

—|—2dafa; + 2d*aray + Zeafaz + Ze*alagL (1.5)
with

]’_la)j . .

g = T[(U-i — z;) + 2iu;] i=L12 (1.6)
how; )

sj = Tj(vj +Zj) j=12 (17)
h/ h

2d = ‘lez (v = 2) +i5 (o + wur) (1.8)
h/ h

2e = cha)z (v+2)— |§(602M —wiu') . (1.9

This new representation, in which the main role is now played by the canonical operators
(a1, af , az, a), clarifies the interpretation of the system as describing the normal modes of
the quantized electromagnetic field. This is the main reason Mty can be (and actually
is being) used in quantum optics where the description of nonlinear quantum interactions
between light and different kinds of optical material media makes the formalism very useful
by looking at the interaction of photons as the active part of the dynamics while the optical
media is regarded as the passive part of the system.

2. The Lie algebra of the groupSO(3, 2)

The identification of the dynamical symmetry of the present system [1-3] requires us to
consider the bilinear products of two independent bosonic operators. Given two bosonic
operatorsus, a, that satisfy (1.4), we can construct the Hermitian operators

J12 = 3[af a1 — ajar) D15 = 3la? + af — a3 + af] (2.1)
J13 = 3[af a — ara]] Jos = 3ilaf a; — a1a]] (2.2)
Jia = tilaf? — a2 + a3? — a3 Joa = —3[af? + af — af® — af] (2.3)
Jos = zlli[afz - af — azrz + a%] J3s = %i[ai'a;r — aia;] (2.4)
Jag = —%[afa;r + a1az] Jas = %[afal + a;az +1] (2.5)

that satisfy the conmutation rules:

[Jabv ch] = i[gadjbc + gbc]ad - gac]bd - gdeac] (26)

determine the set of the operatakg (a = 1,2, 3,4 andb = 2, 3,4, 5) as a realization of
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the Lie algebraso(3, 2) ~ sp(4, R). The dynamical symmetry of the Hamiltonian (1.1) is
established in such a way.
By considering the linear combinations:

Co = Ji2 = 3lajay — af ap] Do = Jss= Slajar+ajap+1]  (2.7)
C, = J13—iJ23=afa2 D, = —134—iJ35=afa§r (2.8)
C_ = Jiz+iJos = ara; D_ = —Jz+iJzs = a1az (2.9)
and
Eo = 3(J12+ Jas) = 3[aj a1 + 3] (2.10)
Ey = 3(J15 — Joa) — 3i(Jra+ Jos) = %afz (2.11)
E_= %(115 — Jog) + %i(114+ Jos) = %af (2.12)
Fo = 3(Jas — J12) = 3[af az + 5] (2.13)
F, = %(JlS + Jog) — %i(fm — Jos) = %032 (2.14)
F- = 3(J15+ Joa) + 3i(J1a — J29) = 345 (2.15)

as well as their conmutation relations, we can obtainstaiB, 2) the subalgebra structure
given in table 1.

Table 1. Subalgebras aofo(3, 2).

Generators Subalgebra Casimir

C={Co,Cy,C_}  s0(3) =~ su(2) C2=C3+icico+cocy)

D ={Do,Dy,D_} so2, 1) ~su(l,]) D?>=-DZ+3(DyD_+D_Dy)
E={Eo,Ey,E.}) so2D~su(l,l) E?>=-E3+i(ELE_+E_E.)
F={Fo,Fy,F_} soD~su(ll) F?=-F¢+3(FyF- +F_Gy)
EUF su(l,1) +su(l,1)

{Co}U D u(l) +su(l, 1)

{Do}UC u(l) + su(2)

The two independent Casimir operators [7] in the realizations are

C1=2Eo+2E*+2F°+ D,D_—C,C_ =3 (2.16)
Co = HCy, @2 +[C_, @2 — [D,, ®2 — [Dy, 92 — 282} =0 (2.17)

with ® = E? — F2,

The Hilbert space ofH(z) is the space of the representati@,o) of sp(4, R).
Such a representation contains the direct product of the representatiofs)* Dt (F)
of su(1,1) + su(1,1) with E, F,  or 3, the states of which have a definite number of
photons. The Hilbert space, in this realization of the algebra, should therefore be generated
by states with a definite number of photons in each mode. Notice that the compact maximal
subalgebrau (1) + su(2), is constructed with the operators that conserve the total number
of photons.
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3. Group elements and the temporal evolution

By using the exponential mapping we can express each group element as

eXp{Za,-jJ,-j} l,]15 (31)
ij
If we consider just unitary elements, we can find, after a suitable factorization, elements as
(8]
U = S]_SlezTRle (32)

where the notation is quite straightforward:

1= S1(B1. a1) = exp[3(Braf? — Biad)] (3.3)
So = S2(Ba. az) = exp[3(B2a3* — B3a3)] (3.4)
S12 = S12(B, a1, az) = exp[Baia; — B*ayaz] (3.5)
T = T(z,a1,a) = explrai az — t*a1a;] (3.6)
Ry = Ry(61, a1) = exp|3i61(afar + 3)] 3.7)
Rz = Ro(62, az) = exp[iba(agaz + 3)]. (3.8)

The Baker—Hausdorff-Campbell formula allows us to rewrite them in a more useful
way that is summarized in table 2; notice that the proposed factorization is always possible
for the symmetrySU (1, 1) but not for SU(2). The reason lies in the different behaviour
of the function tankx) which is continuous in the positive halfline and tanwhich has
discontinuities atr = (2 + 1)%. For instance, it is not possible to split the operator
T(37€®, a1, az). Therefore we acceptd g < /2 (see table 2).

Table 2. Factorization of the operators.

Si(Bi.ai) = Si(ni. ai) = exp{(ni/2)}a; %} expl (v /2)(a; a; + 1/2)} exp—(n; /2)a?}
S12(B, a1, az) = S12(, a1, az) = expinay aj } expl(y /2)(aj a1 + af az + 1)} exp{—n*a1az}
T(t, a1, a2) = T (i, a1, az) = exp{uay a2} exp{(/2)(af a1 — a3 a)} exp{—p*aia] )

Bi = ri explig; } B = rexpig} T = q exp{id}
n; = tanhr; explig; } n = tanhr expli¢} n = tang expfi®}
vi = log{1 —n;n;} y = log{1 —nn*} 7 =log{1+ pup*}

We shall be callings;(8;, ;) the SU(1,1) generalized coherent state generator as
constructed in [9-11]. Its action on the creation and annihilation operators

. — p.at
aj —nja;

V1—1n;l?
transforms them into a linear combination of the previous canonical operators, which has
the effect of transforming an initial generalized coherent state into a one-photon coherent

mixture with different noise properties as is shown in table 3—we call itahe-mode
squeezing operator.

Sja;S; = coshvja; — €% sinhr;a; (3.9)
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Table 3. Bogolyubov transformations.

Sja,'S;— = (aj — njqr)(l - |7}j‘2)71/2 = COSthaj — ei¢f sinhrja;'
Sia;S;" = q; i#]

Slgalez = (a1 — na;')(l — 9% Y2 = coshray — €¢ Sinhra;
S12a287, = (a2 — nai) (1 — |n|?)~Y2 = costvap — € sinhra;
Tar T = (a1 — paz)(L+ |u|?)~Y? = cosqay — €% singay
TapTt = (a2 + p*a1)(1 + |n]?) Y2 = cosqaz + e i® singay
Rjaij = eXp{f%in}aj

Ria;R = a; i#j

S(B, a1, ap) is the two-modeSU (1, 1) generalized coherent state generator, which leads
to the two-mode squeezing operator

S12a187, = % = coshra; — €% sinhraj (3.10)
—-m
— nat .

SioazSt, = 2T _ costra, — € sinhra . (3.11)

V1—1nf?

These transformations mix the linear combinations of the canonical operators of both modes.

The noise properties for the transformed operators also appear to be drastically modified.
T (z, a1, ap) is the compact operator belonging to the sef6f(2) generalized coherent

state generators. This operator, as will be shown below, does not modify the noise properties

of the transformed operator. Its action can be written as

TaT+ = 2712 _ cosgar — 62 singar (3.12)
V1t iuf?
Ta, T = @2tra = cosqay + € '® singa; . (3.13)

V14 ul?

R; (6;, a;) is merely a rotation operator in the complex plane acting as
Rja; R} = exp{—3if; }a; (3.14)
RiaiRf =a;  i#] (3.15)

and it transforms a given generalized coherent state into another state with an eigenvalue
rotated by an anglé;. Indeed it does not modify the noise properties. A brief account of
these properties is given in table 4. The temporal evolution of the significant elements can
be obtained from the Magnus formula [12] and is summarized in table 5.

Table 4. Generators of coherent states.

Generators Subgroup
T =T(t,a1,a2) SU(2)
1= S1(B1, a1) SU1, D

S2 = S2(B2, az) SUL D

S12 = S12(B, a1,a2)  SU(L D)
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Table 5. Temporal evolution of the operators.

! +2 . k2

. . a. 1 0in; —nin; + 1 0 a

S.st = W i 1Nl i (ata; + 1) — i Y

P 1-[ni2 2 2 1-[n;? (a;"a; 2) -2 2

cooct — 0 o+ 4+ Llant-npt o+ + _
$1287, = T2 92 21 e (a7 a1 +azaz+1) Ty 4102

Pt — + e R _on +
TT _1+\/1|2a1a2+2 T2 (ay a1 — ay az) TR 9192

. )
RjRjT*' = Ifé(a;'aj + %)

4. Temporal evolution and diagonalization

The exact solution of the Sdbdinger equation for the Hamiltonian (1.1) is a problem of
great difficulty that relies on the existence of two degrees of freedom with a strong nonlinear
interaction which contains the 10-parameter dynamical group symrfietdy R). To solve

the problem it is necessary to deal with a nonlinear system of 10 coupled differential
equations. Nevertheless, in some particular cases, with interesting physical applications, the
system has exact solutions. These particular cases are found by reducing the system to one
effective degree of freedom. The reduction can be obtained either through a complete and
systematic classification of the Lie subalgebras of the system or by specifying the parameters
of the Hamiltonian and its corresponding relationship to them. Both methods can be shown
to be totally equivalent. Throughout this paper we have used the second method.

The temporal evolution operator can be written as an element of one of the above-
mentioned subgroups in such a way that the whole problem can be solved just by using
the subgroup elements, and the elements of the total group are, in principle, not necessary.
The instantaneous diagonalization will be treated in a similar manner: the triparametric
reductions ofH (¢) are related through a unitary operator constructed with the help of the
corresponding Cartan subalgebra of each subgroup (see table 4).

4.1. Reduction teu(2) + u(1),g1=g2=d =0
H@) = 2s1(afa1 + %) + 2sz(a;a2 + %) + 2eafaz + 2e*aray (4.2)

where H (t) could be interpreted as the Hamiltonian describing the ideal conversion of one
photon of frequencw, < w1 and another one of frequeney —w, (coming from a classical
pumping field) which are simultaneously destroyed to produce a single photon of frequency
w1. The coherent pumping light beam is treated as an unlimited source of photons described
by the classical functioa(z).

H(t) is also an element of the algebra(3, 2) and its subalgebrau(2) + u(1). The
states belonging to this representation space can be classified by the number of photons
in each mode. The relationship between these photon numbers and the eigenvalues of the
su(2) representationj andm, are given by

J =3k + ko) (4.2)
m=3(ky — ko). (4.3)
It is trivial to see that all possibleu(2) representations may be realized withandk, as
arbitrary integers.
The group elements and, in particular, the time evolution operator act in an irreducible

manner on the representation space vector states for a fixed valuelofthis way they
leave invariant the total number of photons but not the individual humber in each mode.
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4.1.1. Instantaneous diagonalizationOne can always achieve an instantaneous
diagonalization even if the dynamical group is 8@f (2) (as is the case here). The unitary
operator (an element of the group) acting on the Cartan subalgebra will now be a mixing
operator andH (r) can be expressed in the instantaneous approximation as

H (1) = T (10){2(s1 + s2) Do + 2F (1) Co} T " (10) (4.4)

for certain values of the functiong'(r) and uo(z) in connection with the Hamiltonian
functions. For instance,

F(t) =+/(s1 — 52)2 + 4le|?. (4.5)

The instantaneous eigenstates df(r) are the generalized coherent states
T (uo(t), a1, az) k1, k2) corresponding to a realization in two modesSdf (2) with a time-
dependent eigenvalue

Ep g, = (s1+852) (ks + ko + 1) + F(t)(ky — ko) . (4.6)

Notice thatF (¢) is real for any value of the parameters. This means thatS@ni?) operator

is diagonalizable and (in particular for this realization) any two-dimensional oscillator can
be put in correspondence through unitary operators to two independent stationary harmonic
oscillators.

4.1.2. Temporal evolution. The direct product implies that the evolution operator can be
constructed by means of the product of two unitary elements, one §¢hn and the other
from SU(2)

U(t) = T(z, a1, a2) R1(01, a1) R2(02, az) (4.7)

determined by the characteristic functions defined in terms of the parameters of the
Hamiltonian by means of the equations

2 t
01 = —:f (251 — e*u —ep™) dr (4.8)
h Jo
2 t
0, = —F / 252+ e*u +epn™)dr (4.9
0
. .2 .
p=—izletGr-su—ep’]  pO=0. (4.10)

4.2. Reduction tou(1,1) +U(1), g1 =go=¢=0
H@) = 2s1(afa1 + %) + 2s2(a3'a2 + %) + Zdafa;' + 2d*aqaz (4.12)

whereH (r) should now be regarded as describing the ideal frequency conversion in which a
photon of frequencw; + w; of a laser beam in a classical coherent state is destroyed when
interacting with a material media. The result is the creation of two photons with frequencies
w1 andwy; this process takes place in the degenerate optical parametric operators [13-17].
H(t) is now an element of theu(1,1) + u(1) part of thesp(4, R) algebra. The

realization ofsu (1, 1) that we should consider here uses two bosonic operators that describe
two independent vibration modes and differs from that used in the one degree of freedom
case [1]. The eigenvalue of the Casimir operator is

p?=1-¢2 (4.12)

and is not a fixed value but depends on the occupation number of both modes as well as
on the eigenvalu€y. Equation (4.12) has two solutions: to each statek,) with a given
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occupation degree corresponds two different valuegpfi). One can freely choose one
of them. The stateg, ko) = |k, kK + m) are identified with
ki —ko+1

k= — (4.13)

m=ko. (4.14)

In particular, all the states with equal numbers of photons in both modes constitute the shell
k=0,m=0,1 2, etc of SU(L, 1).

The elements of the group now leave invariant differenceof the number of photons
in each mode but not the total number. Therefore the action of the group elements on the
space of states is equivalent to creating (or annihilating) pairs of photons of each mode
simultaneously.

4.2.1. Instantaneous diagonalizationCalling € the sign ofs; + s», H(t) can be expressed
as

H (1) = S12n0){2(s1 — s2)Co + 2¢ F (t) Do} S1,(10) (4.15)

for certain values offF'(+) and () independent of the functions of the Hamiltonian. In
particular,

F(1) = v/(s1 + 52)2 — 4]d|? (4.16)
2d(1)

= —— - 4.17

no(t) € 514 5ol 4 F (4.17)

The instantaneous eigenstates df(t) are the generalized coherent states
S[no(t), a1, a2]lk1, k2) corresponding to a two-mode realization £ (1, 1) with a time-
dependent eigenvalue

Eiy i, (1) = (51— s2) (k1 — k) + € F(t) (ks + k2 + 1) . (4.18)
This method can only be applied if the following condition holds:
(514 52)°> — 4]d|)* > 0. (4.19)

This is due to the fact thak'(z) is not well defined if this condition is not fulfilled.
4.2.2. Temporal evolution. In this case the temporal evolution operator should be factorized
as the product of a two-mode ‘squeezing’ operator by a rotation operator

U(t) = S12(B, a1, a2) R1(01, a1) R2(62, az) (4.20)
whose characteristic functions are

2 t
0, = —}:l/ (252 +d*n+dn*) dr (4.22)
0
2 t
0y = _ﬁf (251 +d*n+dn*)dr (4.22)
0
) .2 .
= —iz[d+ (1 +s2)n+d n°] n(0) =0. (4.23)

The exact states dff (r) can be obtained with the aid of table 2 as

W (1)) = S12(B, a1, az) R1(601, a1) Ra(02, az) k1, ko) . (4.24)
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4.3. Reduction teu(1,1) + su(1,1),d =e =0

The Hamiltonian is
2
H = Z2sl~ (a;a; + %) + gia? + gla?. (4.25)
i=1

The initial Hamiltonian is an element of the part(1, 1) +su(1, 1) of theso(3, 2) algebra.
Because of the conmutation of all the operators of the one-mode with those of the two-
mode, the problem can be factorized and its solution requires the solution of two independent
identical systems.

4.3.1. Instantaneous diagonalizationThe operatorsS = S1(81, a1)S2(82, az2) (see table 2)
diagonalizeH (¢) exactly for all times [1]. In this case the relevant parameters take the form

2
H@ =Y 26 F(0)S: (o) (afa; + 1S (o) i =12 (4.26)
i=1
E(f)=‘/S3—|gl|2 l=1,2 (427)
8i .
i(f) = —¢€; =12. 4.28
noi () € 5+ F i (4.28)

4.3.2. Temporal evolution. The evolution operator i (1) = U1(¢)U,(t) with U; (¢) defined
as

Ui(t) = Si(Bi, ai)R; (6;, a;) (4.29)
the characteristic functions of which are [1]
2 t
o= [[@irgmromda  i=12 (4.30)
0
2i
ni = _ﬁ(gi + 2s;n; + g?‘n,-z) dr ni(0) =0 i=12. (4.31)

4.4.g1=g2=S1=S2=0

H = 2d*aia, + 2€afa2 + HC. (4.32)
The initial Hamiltonian does not belong to the subalgebras considered and contains just
terms of the interaction between the two modes. In some cases the two modes in the
interaction should be decoupled by means of a canonical transformation and the problem

could be solved in terms of two independent particles. In fact, we can introduce a new pair
of modes

e ag —ap

6_11 = XLZ;]_XJr = m \/2 (433)
_ e* a1+a
G = Xap X" = el ! 7 2 (4.34)

that are canonically related to the initial modes through the product of one mixed operator
by a rotation operator,

T

X=T (Z ,ai, Clz) Ri(—argle), ai) Rz (argle), az) . (4.35)
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The time-dependent system transformedXbys
. hd
H=ihXXt+XHX" = —Ea[arg(e)]afaz + d*(af — ag) + |e|(afa1 - a;az) + HC.

(4.36)

The only time dependence iX is the one coming from afg) in such a way that

if this argument is constant (in particular, &) is real or purely imaginary), the
canonically transformed Hamiltonian is an element of #h€l, 1) + su(1, 1) subalgebra

that corresponds to two independent particles. The system is reduced to the case discussed
in subsection 4.3. In any case, the same transformatiorould be used to obtain the
instantaneous diagonalization of the Hamiltonian.

4.4.1. Instantaneous diagonalizationThe termX H Xt actually represents two uncoupled
one-dimensional harmonic oscillators. For a given timéhe Hamiltonian can actually be
written as

H(t) = F) Xt S1(no, a1)S2(no, az){ai a1 — a3 az}Sy (no, a1) S5 (no, az) X (4.37)

for certain values of () andno(¢) as functions of the parameters in the form

F(t) = ]el2— 4|d|? (4.38)

no(t) = —ﬁ . (4.39)
The instantaneous eigenstate/{:) are the states given by

X" S1(n0, a1) S2(no, az) k1, ko) (4.40)
with time-dependent eigenvalues

E, (1) = F(t) (k1 — k2) . (4.41)

This diagonalization can only be made possible if the condition- 2|d| holds, and the
set of eigenstates becomes highly degenerate. All states with the same differenée
have the same eigenvalue.

4.4.2. Temporal evolution. The state corresponding tH can easily be found by the
evolution of H(¢) usingU (¢) = U1(¢t)U2(t) given by

Ui(t) = Si(Bi, a) Ri (6;, a;) i=172 (4.42)
and the corresponding functions are

2 t
0 = :l:ﬁ/ (2le| 4+ d*n; 4+ dn?) dt i=12 (4.43)
0
2
0= :I:ﬁ[d + 2leln;: +d*n?] n:(0)=0 i=12. (4.44)

As soon ad/ (1) has been explicitly obtained one can use it to i) = XtU (1) X. We
have been able to demonstrate that using the conmutation relations:

Ri(61)R2(62)T (7) = T (v€ ™ %/%) R1(61) R2(62) (4.45)

Ri(6))Si(n;) = Si(n:€)Ri(6)) . (4.46)
The unitary operatot/ (r) can be factorized as

U =T (=758.) $1018) 218D Ra6 Ro(6) T (0. (4.47)

with 8§, = €39,
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An alternative way to deal with the complete case relies upon the use of the interaction
picture. Let a HamiltoniarHy, (su(1, 1) + su(1, 1))-invariant be of the form

2
Ho=_[25;(afa; + 3) + gja;* + g} a?] (4.48)
j=1
with time evolution operator given b¥(¢) of section 4.3 and the interaction Hamiltonian
is given by

H;,, = U(;’[Zdafa;r + 2d*arap + Zeafag + Ze*ala;]Uo

= Zjafa;r + 2d*aja, + 2eaf ap + 2eaf ap + 2¢*a1ay (4.49)
where
d= %1% [d +d*nin2 + e*n1 + en2] (4.50)
V1= nPy1—In2?
e = %1% [d*n1+ dns + e + e* mn3) (4.51)

V1-1mPy1—1ina?
with §; = €%/2, j =1, 2.

If one should be able to find the exact evolution operafgy(z) for H;,,, the problem
would have been easily solved since the time evolution of the initial system will be given by
U(t) = Uog(t) Ui, (¢). Therefore the problem can be reduced to solve the case of section 4.4
where arge) is not a constant. We have been able to establish after a long calculation that
if one constraint holds this goal can be achieved. The constrdint is

0y — 61

argle) = + argtaru) = cte (4.52)

whereu is given by the following expression:
_ldI[Inal SINE1 + |n2] SINE2] + |el[sin(arge) + [n1]|n2| SIN(E1 — E2 — arge)]
|d|[In1] COSE1 + |n2| COSE2] + e|[cos(@arge) + [n1]ln2| COSE1 — Bz — arge)]
and

(4.53)

E; = argn; —argd . (4.54)

To this class of general solutions belongs the Hamiltonian solved in [2] with the
identifications

e(t) =hQ (4.55)
h
81=—8= _IEF (4.56)
s=d=0. (4.57)
In our formalism we shall be obtaining

t
N2 =—n1= tanh{/ I'(s) ds} (4.58)

0
0p=6=d=0 e=e (4.59)
Hiy = 272 (af a2 + a1a3) (4.60)

which is clearlySU (2)-invariant.

1 Notice that the constraint involves a relationship of 10 functions. However restrictive it might seem there is
still quite a lot of room for many interesting cases that can be solved exactly as we shall show below.
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45.g1 =g, g2 = ge 239 5 — 5, =5, argle) = cte

The Hamiltonian is

H = g*(a? + €¥99a3) + s(af a1 + aj ap + 1) + 2d*ayas + 2ea;a + HC. (4.61)

Besides the fact that the condition among the coefficients is strong, in fact it contains the
important cases: (i1 = g2 ande(¢) real (symmetry of interchange), (i1 = —g» and
e(t) imaginary and (iii)g1 = g2 = 0, s1 = s ande(¢) imaginary which corresponds to the
problem discussed in [18] for the degenerate case. This case is technically identical to the
previous one. The same canonical transformafidin) drives the system to a set of two
particles whose interaction is determined for the time evolution ofearg
H=ihXX"+XHX"
hd ; -
= =5 g [A9©)la az + (€74 + dya* + (€71 — d)a;?

+ (s + |e|)(afa1 + %) + (s — |e|)(a£ra2 + %) + HC. (4.62)

4.5.1. Instantaneous diagonalizationThe static part off of sections 4.4 and 4.5 represent

the same and differ just by their characteristic parameters. The fact that the problem has
been reduced to two one-dimensional independent harmonic generalized oscillators with
different functions forces us to consider transformations with different paramgférsnd

néz). If we call e, the sign of(s & |e]):

H(t) = Ale; Fi(t)af a1 + e_ Fa(t)af a} A (4.63)
where

A= XTS1015", an)S2(n15”, az) (4.64)
with

Fio(t) = \/(s + le))? — 4(|d|? + [g|* £ 2|d||g| coSpg — ¢ — ¢.))  (4.65)
2(ge % + d)

O = e b+ Py (4.69)
The instantaneous eigenstatestbft) are

X*S$1(ng”, an)Sa(n”, az)lke, ko) (4.67)
whose time-dependent eigenvalue is

Eiy 1, (1) = €4 F1(0)k1 4 €_ Fa(t)ks . (4.68)

4.5.2. Temporal evolution. If arg(e) is a constant, we are again in the case of section 4.3.
The solution can be written as in (4.26) where

2 rt ) )
0; = - / [2(s % le]) + (g*€*9 £ d*)n; + (g9 £ d)p}]dr (4.69)
0

2 . _
i =z [(ge7'%9) £ d) + 2(s % |el)n; + (g€ £ a*)n?] (4.70)

n;(0) =0 j=12. (4.71)
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4.6. The general case
Now let H(¢) be a general Hamiltonian described by
H(t) = s1(t)(af a1 + 5) + sz<t>(a;az +3) + g1(0)aj” + ga(t)ad?
+2d(t)a1 a2 + Ze(t)a1 as + HC (4.72)

whereay, af , dz, a; are canonical operators associated with two different modes. Let us
find the most general solution of a time evolution operdi@r) verifying

iRU (U™ (1) = H (1) U@ =1. (4.73)
In order to proceed we factorizg(z) in the general form (see table 4)
U(t) = $1(B1, a1)S2(B2, az2) S12(B, a1, a2) T (7, a1, az) R1(61, a1) R2(62, az) . (4.74)

Introducing this form ofU (¢) in equation (4.73) we find, after a cumbersome calculation,
the following set of 10 strongly coupled first-order nonlinear differential equations. They
read as follows:

Ig = g1+ 2s1m + gini + 21— ImlH—— it | |2 (4.75)
igﬁz = g2+ 25om2 + g3n5 + 2(1 — |712|2)WG’1&2 (4.76)
%n = Hip+ [s1+ 52+ Re{gani + gon3} | n + n°Hi, — 2 Re{n(GfE;zGizn;)} (4.77)
%ll = ]1::2:2@12 — Gion®) + 151 — 52 + Relgin} — gon3}]

—2u Re{”(GiZZTh;ZG’iz’?ﬁ)} (4.78)
= ot R + oy 2SI R (@79
e = ot Retgans + ) 2] L Ry (4.80

and initial conditions given by
11(0) = 172(0) = n(0) = u(0) = 61(0) = 62(0) =0 (4.81)

whereG1,(n1, n2) and Hix(n1, n) are defined as

e+ ninse* +md* + nid

V1=1mPy1—|nzf?
Hiz(n1, m2) = d+ mnzd” + me”  nae . (4.83)

V1= n1Py/1— [n2l?
One can easily see that these equations contain free Riccati terms appearing together
with strongly coupled terms arising mainly frof;, and Hy,. One could, in principle,
obtain the functionsu, 61 and 6,, but first the system formed by, n, and n must be
solved since it constitutes the core of the coupling. A systematic method to derive an
approximate solution can of course always be devised. One begins with the obvious
assumptionG) = HY = n© = 0, and the zeroth-order approximation is obtained
(7 and ) by solving the Riccati equations (4.75), (4.76). In the next step one can
construct the first-order approximations, H,3 andn® and this iterative process can be

G12(n1, m2) = (4.82)
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continued until the desired degree of approximation is needed. In any case, aside from any
approximation, one can deduce from the system the following general conclusions:

e The solution can only be expressed as spin-coherent states if and only if the following
condition holds:g; = go =d = 0.

e The solution can only be expressed as two-mode squeezed stateSU(dr 1)
generalized coherent states) if and onlgif= g, = e = 0.

e A solution in terms of tensor products of one-mode squeezed states can be found if
e=d=0.

e In spite of the fact that a general analytic solution of the general case does not seem to
exist we have found several interesting particular cases. Let us make the ansatz

n; = —itanhr; exp(iargg;) j=12 (4.84)
n = —itanhr exp(iargd) (4.85)
u = —itang exp(iarge) . (4.86)

Next we impose the following condition on some of the functions appearing (). In
fact, these conditions are

4 t
argg; = _ﬁ/o s (1) dt j=12 (4.87)
argd = w + 81% (4.88)
arge = w +2) (4.89)

Under the above particular assumptions we can obtain non-trivial decouplings of the
complicated system (4.75)—(4.78) and we find that the initial system reduces to a new
one with only real functions and jutur nonlinear coupled ordinary differential equations:

Fitio= 2l + g + 2450020 r(0) =0 (4.90)
hmio= 2l ~ Igol) + 20800200 ra(0) = 0 (4.91)
g cosh2r) = %{|e| cosh(ry + €3rp) + €ald| sinh(ry + €3r2)} q(0) =0 (4.92)
F= %{|d| coshiry + €3r2) + eale| sinh(r1 + e3r2)}  r(0) =0. (4.93)

The four simplified cases are summarized in table 6 where the meaniag vaith
i = 1,2, 3 and 4 becomes evident. Cases Vl.a, VI.b and VI.d have not been described in
the literature, at least to the authors knowledge. Case VI.c can be proved to be equivalent
to the one described in [8]. Table 6 represents a complete classification of the types of

Table 6. Reductions of the general case.

Case 851 82 €1 € €3 €4
Vl.a 0 -1 0 -1 -1 1
Vib -1 0 -1 0 1 1
Vli.c 0 1 0 1 -1 -1
Vid 1 0 1 0 1 -1
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systems one can encounter in dealing with the general case, which has in fact been reduced
to solve four different coupled real ordinary nonlinear differential equations.

5. Comments and conclusions

In this paper we have considered a general time-dependent quantum harmonic oscillator with
two modes which exhibits a dynamic8D (3, 2) symmetry. In order to report a complete
classification of the exact solutions of this quantum system we have exploited the reduction
of the large dynamical group to some of its subgross(2) x U(1), SU(1,1) x U(1)

and SU(1,1) x SU(1,1) each of which describe different quantum systems of physical
interest. The general formalism in the case of triparametric groups proceeds as follows:
one first identifies the time evolution operator among the corresponding subgroup elements,
using the exponential mapping, through a functional time-dependent variable that must
be a solution (in all cases) of a first-order nonlinear Riccati equation. The instantaneous
eigenstates can be put in correspondence with the eigenstates of the two uncoupled one-mode
time-dependent quantum harmonic oscillators through a unitary operator. The generator
of this transformation is also an element of the subgroup considered and can be non-
trivially parametrized through another functional time-dependent variable, but this time just
algebraically related to the previous differential variables of the system. We have also
found that some cases exhibiting the f§lD (3, 2) complete dynamical symmetry can be
reduced to two one-mode uncoupled time-dependent quantum harmonic oscillators with the
help of a suitable unitary transformation. Such particular cases also have an exact solution
that can be found with the general methods described here. Finally, the general case has
also been considered. Its exact solution is uniquely related to the solution of a system of
10 Riccati-type differential equations, but this time strongly coupled. Imposing a not too
restrictive set of conditions on the parametric functions we have been able to solve a great
many general Hamiltonians with properties summarized in table 6. Besides the presentation
of the general formalism, the study of this case probably constitutes the main result of
the paper since the four decoupled cases have been described for the first time with the
exception of case VI.c [8]. Much work remains to be done in the field of applications
of these solutions to physical Hamiltonians describing laser—matter interaction in various
situations. The appropriate place to report on these results will be periodicals dealing with
applied physics or quantum optics, but in any case work in this direction is now in progress.
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